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Abstract

While wave energy is regarded as one of the prominent renewable energy resources to
diversify global low-carbon generation capacity, operational reliability is the main impedi-
ment to the wide deployment of the related technology. Current experience in wave energy
systems demonstrates that operation and maintenance costs are dominant in their cost
structure due to unplanned maintenance resulting in energy production loss. Accurate
and high performance simulation forecasting tools are required to improve the efficiency
and safety of wave converters. This paper proposes a new methodology for significant
wave height forecasting. It is based on incorporating swarm decomposition (SWD) and
multi-strategy random weighted grey wolf optimizer (MsRwGWO) into a multi-layer per-
ceptron (MLP) forecasting model. This approach takes advantage of the SWD approach
to generate more stable, stationary, and regular patterns of the original signal, while the
MsRwGWO optimizes the MLP model parameters efficiently. As such, forecasting accu-
racy has improved. Real wave datasets from three buoys in the North Atlantic Sea are used
to test and validate the forecasting performance of the proposed model. Furthermore, the
performance is evaluated through a comparison analysis against deep-learning based state-
of-the-art forecasting models. The results show that the proposed approach significantly
enhances the model’s accuracy.

1 INTRODUCTION

Ocean energy, derived from abundant and geographically
diverse renewable resources such as waves, tidal streams, ocean
thermal energy conversion, and salinity gradients [1], plays a key
role in the global transition towards sustainable and clean energy
production. Projections indicate that it could contribute to 10%
of Europe’s electricity needs, representing a significant share of
total renewable generation [2]. The development of wave and
tidal energy technology has gained momentum globally, with
particular emphasis in Europe, as the global wave and tidal
power capacity reached 66.1 MW in 2022 [3]. This is expected to
have a 337 GW installation capacity by 2050 [2]. Despite these
advancements, the diversity of ocean energy devices, particularly
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wave energy converters, lacks a standardized design, hindering
their widespread adoption compared to other renewable tech-
nologies like wind energy [4]. Realizing the full potential of
ocean energy requires optimizing capacity factors and enhanc-
ing the entire life cycle of processes, with a strategic focus on
reducing the high levelized cost of electricity through reliable
and flexible wave renewable energy devices [5, 6].

In marine science research, the significant wave height (SWH)
stands as a critical parameter, representing the power of ocean
waves and playing a key role in the optimal design of wave
energy converters [7]. Accurate SWH forecasting tools are
imperative for ensuring smooth and controllable power, mini-
mizing the need for storage devices, and reducing overall system
costs. The short-term forecasting of SWH, particularly over
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a few hours, is of vital interest in various ocean engineering
operations [8]. Decision-makers in maritime traffic and marine
structure construction rely on accurate SWH predictions for
efficient planning [9]. However, the inherently non-linear and
non-stationary nature of ocean waves poses a challenge to short-
term SWH forecasting. Existing numerical models like WAM
[10], simulating waves nearshore [11], and WAVEWATCH-III
[12], while effective, often demand excessive computational
resources, limiting their application to medium- and long-term
forecasting [13]. In response, alternative approaches such as
autoregressive moving averages [14] and seasonal autoregressive
integrated moving averages [15] have been explored. Nonethe-
less, the linear and stationary assumptions of time series models
result in lower performance for marine wave forecasting [16].

The advancement of computer science and technology has
enabled the application of advanced artificial intelligence (AI)
models to the stochastic nature of marine wave data. AI-based
models outperform numerical models since they do not rely on
precise meteorological data [17]. Using past SWH values, corre-
lation can be achieved and used to extrapolate the future. Several
studies applied artificial neural networks to wave forecasting
[18–21]. Deep learning methods such as convolutional neu-
ral networks [22], the gate recurrent unit (GRU) network [23],
and long short-term memory (LSTM) [24, 25] have become
widespread. In Wang et al. [26], the GRU has been shown to
have the ability to produce better SWH forecasting performance
and capture the general data trend as compared to support
vector machine (SVM) and extreme learning machine (ELM)
models. It does not, however, achieve a completely satisfactory
forecasting performance for extreme event peak wave heights.
While machine learning models are widely used today, hybrid
models have been developed to improve model performance.

Hybrid AI-based models utilize preprocessing or optimiza-
tion algorithms to enhance forecasting performance [27, 28].
Due to the non-stationary and non-linear properties of ocean
waves, a single resolution component is not sufficient to esti-
mate wave heights. Herein, some preprocessing approaches
can be used to decompose wave time series data. The use of
decomposition methods such as empirical mode decomposi-
tion (EMD) [29], a multi-stage multivariate variational mode
decomposition (VMD) [30], complete ensemble empirical mode
decomposition (CEEMDAN) [31], and discrete wavelet trans-
formation [32] has been shown to be effective in various
forecasting applications. To reduce non-linearity and non-
stationarity in wave data, Hao et al. [33] proposed a hybrid
method based on EMD-LSTM. The EMD-LSTM model is
shown to have higher accuracy than the single LSTM model
without adding any preprocessing steps. Therefore, the EMD
process can effectively deal with the non-stationary characteris-
tics of the wave data and develop the prediction performance of
the LSTM model. As each decomposition method has its own
strengths and constraints, oscillations of different amplitudes
in one mode or similar oscillations in different modes might
occur in an EMD-based preprocessing step. Moreover, selecting
a main wavelet function in wavelet-based decomposition meth-
ods is still fairly challenging. Swarm decomposition (SWD) [34]
has been shown to be effective in dealing with the mode mix-

ing problem of EMD for synthetic and real-time applications in
several recent studies, including [17, 35, 36]. Given these advan-
tages, the SWD was selected to decompose wave time series data
in this study.

The optimal choice of parameters for machine learning mod-
els is critical since they have a significant impact on forecasting
results. In this regard, meta-heuristic approaches have grown
in popularity for tuning the parameters [37]. In [38], particle
swarm optimization (PSO) was integrated into the optimiza-
tion of input weights and hidden biases of ELM for the SWH
forecasting problem. Wavelet analysis was also applied to reduce
signal non-stationarity and nonlinearity. Hybrid PSO-ELM with
wavelet analysis outperforms the ELM-based models. Similarly,
in [39], a back propagation (BP) neural network was optimized
to forecast wave heights using the mind evolutionary algorithm
(MEA). Following the optimization process, it is shown that the
MEA-BP hybrid model achieves higher accuracy than the stan-
dard BP neural network model. Thus, the use of meta-heuristic
approaches increases model performance in terms of accu-
racy, as do decomposition methods. Among the meta-heuristic
approaches, the Gray-Wolf Optimization algorithm (GWO) is
prominent thanks to its advantages embedded within the search
mechanism [40–42]. It is based on mimicking the hunting strat-
egy and social leadership of gray wolves. However, it challenges
some issues such as premature convergence, being stuck at the
local minima, and over-fitting that are mostly encountered in
the implementation. To address this deficiency, Lu et al. in [41]
incorporated the concept of the cellular automatic approach
into the GWO. As such, the model performance is enhanced.
The authors in [42] proposed a multi-strategy random weighted
grey wolf optimizer (MsRwGWO) to improve the search per-
formance of GWO by implementing new mechanisms such as a
transition mechanism, a random weighted updating mechanism,
a mutation operator, and a boundary checking mechanism. The
MsRwGWO’s performance has been proven with benchmark
functions known as CEC 2014 in terms of convergence, search
history, trajectory, and average distance. Considering all these
advantages, the MsRwGWO may show a superior approach
in determining the optimal parameters of forecasting models
such as the multi-layer perceptron (MLP), ELM, the adaptive
neural fuzzy inference system (ANFIS), etc. The MsRwGWO
model outperformed its counterparts in a wind speed forecast-
ing application for the analysis considered in [42]. However,
MsRwGWO has yet to be investigated with any decomposition
methods or applied to wave data forecasting in the literature.

The main purpose of this study is to develop a forecasting
tool that provides accurate SWH. It is expected to assist in the
design optimization of wave converter devices. As such, planned
and unplanned maintenance events can be reduced, decreas-
ing the cost of operations while maximizing energy production.
Hence, an improved methodology is proposed for short-term
SWH. The proposed methodology integrates a signal pro-
cessing module (i.e., SWD) and a meta-heuristic optimization
algorithm (i.e., MsRwGWO) into the conventional forecasting
models. The SWD is performed to reduce wave data non-
linearity and non-stationarity, while MsRwGWO is employed
to tune the neural network model parameters. To test and
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validate the proposed hybrid model, its performance is com-
pared with that of deep-learning and meta-heuristic-based
forecasting models, namely, bidirectional LSTM (Bi-LSTM),
GWO, and standalone MsRwGWO. The original SWH data
from three regions, namely, AMETS Berth A Buoy, Clew Bay,
and Smart Bay, are used.

In the remainder of this paper, Section 2 presents the features
of the proposed forecasting model following the descriptions
of the SWD, MsRwGWO, and MLP models. Section 3 intro-
duces the characteristics of the collected SWH data sets, their
decomposition, and experimental results with a thorough per-
formance analysis. Section 5 concludes with concluding remarks
and addresses future research directions.

2 METHODOLOGY

2.1 The swarm decomposition method

The SWD is an intelligent signal analysis method to refine
non-stationary and multi-component signals. The main struc-
ture of this method is based on the swarm filtering concept.
It extracts oscillatory components (OC) from signals using a
virtual swarm-prey hunting algorithm. First, the dominant OC
is estimated for each iteration. The estimated component is
compared to the OC obtained by using SWF. The process is
terminated if any OC does not have sufficient energy. The
SWD consists of two aspects, namely, the swarming model and
swarm-prey hunting. The swarming model uses two interaction
forces: driving and cohesion. If i and n are the number of mem-
bers and steps, respectively, the driving force Fdr(n, i ) is defined
as follows:

Fdr(n, i ) = Pprey(n) − Pi (n − 1), (1)

where the position of the prey is represented by Pprey. Unlike
the driving force, the cohesion force FCoh,i represents the
interactions of all members and can be calculated as follows:

F n
Coh,i =

1
M − 1

⋅
M∑

j=1, j≠i

f (Pi [n − 1] − Pj (n − 1)), (2)

f (d ) = −sgn(d ) ⋅ ln

(|d |
dcr

)
, (3)

where M denotes the number of swarms and the f (.) function
is determined by the members’ distance d and critical distance
dcr. Here, sgn(.) and ln(.) are the sign and logarithmic functions,
respectively. During the swarm-prey hunting process, members
must update their positions, Pi , and velocities, Vi , as follows:

Vi [n] = Vi [n − 1] + 𝛿 ⋅
(

F n
Dr ,i + F n

Coh,i

)
, (4)

Pi [n] = Pi [n − 1] + 𝛿 ⋅ (Vi [n]), (5)

where the parameter, 𝛿, controls the swarm’s flexibility. After
the hunt is completed, the output of SWF can be represented as

follows:

y[n] = 𝛽 ⋅
M∑

i=1

Pi [n], (6)

where 𝛽 is the scale parameter. For 𝛽, a low value, such as 0.005,
is chosen [43]. Two critical parameters influence SWF output: 𝛿
and M . The following is the determination of these parameters
based on normalized frequency, �̂�:

arg𝛿,M min
∑

k

{||Y𝛿,M [k] − ||S [k]||||}2
, (7)

M (�̂�) =
[
33.46�̂�−0.735 − 29.1

]
, (8)

𝛿(�̂�) = −1.5�̂�2 + 3.454�̂� − 0.01. (9)

The SWD’s main idea is to iteratively perform filter-like oper-
ations on the original signal. Detailed information about the
SWD process can be found in [34].

While wavelet-based decomposition [44], EMD [17], ensem-
ble empirical mode decomposition (EEMD) [45], and com-
plete ensemble empirical mode decomposition adaptive noise
approaches (CEEMDAN) [35] are widely used in the liter-
ature, they have some limitations. One of the shortcomings
of the EMD technique is the occurrence of mode mixing,
as well as end effects and a lack of an appropriate mathe-
matical foundation. The EEMD approach has constraints in
terms of computing complexity, number of ensemble trials,
and determining the additional noise amplitude. The difficulty
with wavelet-based decompositions is determining the appro-
priate wavelet base function and the number of decomposition
layers. A further limitation is the necessity of predetermin-
ing the key parameters of the VMD method. Considering all
these approaches, SWD outperforms other signal decomposi-
tion systems in terms of enhancing decomposition adaptability
and eliminating mode aliasing. The SWD method also allows
for the efficient decomposition of a signal into components
while preserving its physical meaning [17]. It has proven effi-
cient in various research areas, such as renewable energy [36]
and biomedical signals [34]. To the best of our knowledge, this
study is the first attempt to apply the SWD to wave forecasting.

2.2 Multi-strategy random weighted grey
wolf optimizer (MsRwGWO)

The GWO is a swarm intelligence meta-heuristic algorithm that
is inspired by the leadership hierarchy and the hunting pro-
cess of grey wolves, as proposed by [40]. The hierarchy of grey
wolves consists of four types of wolves: alpha, beta, delta, and
omega. These wolves are represented hierarchically by the best
solution relative to the rest of the candidate solutions in the
algorithmic process. The mathematical structure of the algo-
rithm is also inspired by three main hunting processes, namely
searching, encircling, and attacking prey. A mathematical model
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DOKUR ET AL. 351

for encircling prey is defined by

⎧⎪⎪⎨⎪⎪⎩
A⃗ = 2h⃗ × r⃗1 − h⃗

C⃗ = 2 ⋅ r⃗2

D =
|||C⃗ ⋅ ⃗Xp(t )) − ⃗X (t ))|||

X⃗ (t + 1) = X⃗p(t ) − D ⋅ A⃗

(10)

Herein, the current iteration and the distance between grey
wolves are represented by t and D⃗, respectively. The prey’s posi-
tion vector is X⃗p. The cooperative coefficient vectors for alpha

(C⃗1, A⃗1), beta (C⃗2, A⃗2), delta (C⃗3, A⃗3) wolves are A⃗ and C⃗ . X⃗ is
the position vector of a grey wolf. h⃗ is a vector with a magnitude
of linearly decreased values from 2 to 0. r⃗1 and r⃗2 are vectors
chosen at random from the vectors in [0,1].

Omega wolves must update their positions in the grey wolf
hunting process based on the positions of alpha, beta, and
gamma wolves (X⃗𝛼, X⃗𝛽, X⃗𝛾). The whole hunting process is
given as follows:

⎧⎪⎪⎨⎪⎪⎩
D𝛼 =

|||C⃗1 ⋅ X⃗𝛼 − X⃗
|||,D𝛽 =

|||C⃗2 ⋅ X⃗𝛽 − X⃗
|||,D𝛾 =

|||C⃗3 ⋅ X⃗𝛾 − X⃗
|||

X⃗1 = X⃗𝛼 − D𝛼 ⋅ A⃗1, X⃗2 = X⃗𝛽 − D𝛽 ⋅ A⃗2, X⃗3 = X⃗𝛾 − D𝛾 ⋅ A⃗3,

X⃗ (t + 1) =
X⃗1+X⃗2+X⃗3

3

(11)

Until the termination condition is satisfied, the iterative loop
continues. Finally, the last position of alpha is the optimal
solution in the source space.

To improve the search performance of the algorithm, a
new GWO variant, namely MsRwGWO, has been proposed
by the authors’ previous study in [42] in which some effec-
tive and novel mechanisms were added to the original GWO. A
transition mechanism was used to update parameter h⃗ in Equa-
tion (10), a transition mechanism was used. While this parameter
decreases linearly for GWO, many problems need non-linear
variation. In this way, local optimal solutions are avoided. The
transition mechanism of the MsRwGWO is expressed as:

h⃗ = 2 ⋅ sin

((
1 −

iter

Maxiter

)
.
𝜋
2

)
⋅ ones[size(Z )], (12)

where Z is the dimension of the MLP problem. In [42], a muta-
tion operator has also been adapted. According to a weighted
updating mechanism, the fitness score determined the new posi-
tion of the wolves. The update mechanism of the MsRwGWO
is given as follows:

S =
∑

i=𝛼,𝛽,𝛾

1

f (X⃗i )
, (13)

w𝛼 =
f (X⃗𝛼 )−1

S
, w𝛽 =

f (X⃗𝛽 )−1

S
, w𝛾 =

f (X⃗𝛾 )−1

S
, (14)

X⃗i = w𝛼U⃗𝛼 + w𝛽U⃗𝛽 + w𝛾U⃗𝛾. (15)

Herein, the fitness value of the positions is represented by
f (X⃗i ). S and X⃗i denote the sum scores and positions of the
alpha, beta, and delta wolves. The positions of grey wolves are
updated by averaging the trial vectors (U⃗𝛼, U⃗𝛽, U⃗𝛾). To improve
the position of wolves, a mutation operator is adopted as

X⃗i (t + 1) = X⃗i (t ) + 0.1(U⃗b − L⃗b ) ⋅ rm, (16)

where Ub and Lb are the upper and lower boundaries of the
search agent, and rm is a normally distributed random num-
ber. In addition to all these mechanisms, for the leader three
wolves, a boundary checking mechanism, a greedy selection
mechanism, and an updating mechanism are added to the orig-
inal GWO algorithm. The performance of GWO in the search
space has been shown to improve in [42] with all six different
update mechanisms. Moreover, the performance of the MsR-
wGWO has been investigated to tune the parameters of MLP in
a wind speed forecasting problem. With the motivations stated
above, the MsRwGWO is performed to forecast SWH data
in this study. Thus, this paper aims to utilize the advantages
of the MsRwGWO with six distinct improved mechanisms to
determine the optimal forecasting model parameters, thereby
enhancing the forecasting model’s performance.

Parameter Settings: To mitigate the risk of converging to local
optima in the search space, the MsRwGWO employed in this
study involves three fundamental parameters. These are the
number of search agents (population size), the maximum num-
ber of iterations, and the mutation probability. Fine-tuning these
parameters is essential for optimizing algorithm performance.
In this study, experiments were conducted to test various param-
eter configurations for the MsRwGWO algorithm. The specific
parameter settings considered are listed below:

(1) The optimization process of the MsRwGWO algorithm in
the search space utilizes reaching the maximum number of
iterations as the stopping criterion. The maximum number
of iterations is set to 1000.

(2) The number of search agents is determined by the prob-
lem dimension. It is set to ten times the problem dimension
(10 × D).

(3) To mitigate the risk of converging to local optima in the
search space, the probability value of the mutation operator
in MsRwGWO is set to a small value of 5 × 10−3.

2.3 Multi-layer perceptron

Neural network architectures include many types of algorithms
with different topologies to suit specific applications. These
algorithms differ mostly in terms of the information processing
methods used [46]. The MLP model is often used for forecast-
ing problems. In [47], the MLP model is found to be appropriate
for non-stationary objectives and problems with very noisy
and/or sparse gradients. This can make it suitable for wave fore-
casting. In order to effectively intervene between external input
and network output, the MLP operates computational nodes
known as hidden neurons. The input layer, hidden layer, and
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352 DOKUR ET AL.

FIGURE 1 The main structure of the proposed forecasting methodology.

output layer form the main components of MLP. Each input
vk to a neuron, m, is multiplied by an adaptive coefficient, wmk,
called weight, and then the weighted sum of the inputs is calcu-
lated using a nonlinear activation function (𝜑) such as a sigmoid,
hyperbolic tangent, etc. as follows:

ym = 𝜑

(
n∑

k=1

wmk.vk + bm

)
, (17)

where n and ym represent the number of the inputs and the sym-
bolic function of the predicted result, respectively. The network
can map an input to an output thanks to an activation func-
tion, and it also gains the ability to learn complex data. In other
words, the MLP model performs non-linear regression from a
statistical perspective. To improve the model’s performance, its
parameters can be tuned by meta-heuristic algorithms.

2.4 Framework of the proposed model:
SWD-MsRwGWO-MLP

The main structure of the proposed model architecture is pre-
sented in Figure 1. To reduce the fluctuation and instability of
the raw wave data, original time series signals are preprocessed
by the SWD. In other words, the SWD decomposes the col-
lected data to obtain more linear data as a preprocessing step. In
the data segmentation, all decomposed signals are divided into
a training set and a test set in a ratio of 70%:30%. Input data for
the training and test sets is created with historical data by using
the sliding window technique. In this technique, the choice of

window width is critical, affecting the optimal model structure,
and it is determined based on the association between current
and past series values. In this study, three steps of previous data
were used to forecast one step ahead. Then, the decomposed
signals are fed into an MLP model by employing the sliding win-
dow technique. In this step, first, the training wave data set is
input to the MLP model. In order to optimize the MLP model
parameters, the proposed MsRwGWO is integrated into the
model. Once the parameters along with their weights are opti-
mized through the MsRwGWO algorithm, the MLP model is
run with the test data set input. In the last stage, the forecasting
results are found by taking the sum of all the individual results
of the decomposed signals. As a result, the SWH of wave data is
forecasted. To increase the training and test performance, nor-
malization and denormalization operations are performed at the
input and output of both processes.

The following advantages of the proposed model can be
mentioned: Firstly, the SWD algorithm, which is based on a
swarm-prey hunting approach, can decompose the SWH data
intelligently and without loss. While it provides more stable,
stationary, and regular features of the SWH time-series data,
it not only effectively solves non-linearity challenges but also
captures the main characteristics of the original data. Secondly,
the MsRwGWO algorithm, which has been shown to be effec-
tive in forecasting some renewable applications [42] optimizes
the model parameters. The MsRwGWO includes six different
mechanisms that improve the model’s performance. The transi-
tion mechanism in updating h⃗ parameter, for example, ensures
that local optimal solutions are successfully avoided. Moreover,
the other five mechanisms help to improve the exploration and
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(a)

(b)

(c)

FIGURE 2 Input to the decomposition module: Original SWH datasets collected: (a) the Amets Bert A buoy, (b) the Clew Bay and (c) SmartBay Wave buoy.

exploitation abilities of the GWO algorithm. As a result, the
contribution to the enhancement of forecasting accuracy of
the integrated SWD and MsRwGWO-based MLP model will
be assessed for the SWH application below. Furthermore, the
other five mechanisms help to improve the exploration and
exploitation abilities of the GWO algorithm. As a result, the
contribution to the enhancement of forecasting accuracy of the
integrated SWD and MsRwGWO-based MLP model will be
assessed for the SWH application below.

3 EXPERIMENTAL RESULTS AND
FORECASTING ANALYSIS

3.1 Data description

To evaluate the proposed model, the SWH data set used in
this study is provided by the Marine Institute in Ireland [48]. It
includes three wave datasets with different characteristics from
three buoy sites. The original data and buoy locations are shown
in Figure 2. Herein, all SWH data has a 30 min resolution. Amets
Bert A buoy data spans the years 1 January 2021, to 31 Decem-
ber 2021; Clew Bay data spans the years 30 October 2021, to 1
January 2022; and SmartBay Wave buoy data spans the years 5
December 2009, to 25 February 2013. It is noted that this paper
enables us to investigate the proposed model’s performance in
terms of different types of datasets.

The statistical descriptions of marine data, including the
mean, standard deviation, minimum, maximum, kurtosis, and
skewness, are reported in Table 1. As can be seen in Table 1,
the fluctuation of Amets Berth A buoy data is the highest.
Considering mean, maximum, and minimum values, all stations
display different amplitude characteristics. While the mean of
the Amets Berth A buoy data is 285.36, the SmartBay Wave
buoy has the lowest mean value of 73.75. Besides, the mean
value of Clew buoy data is higher than that of SmartBay Wave
buoy, while the maximum value of Clew buoy data is lower. The

kurtosis value and skewness value give information about the
height of the distribution of marine data. In terms of skewness,
the SWH is rightward, with values that are greater than zero.
Compared to the kurtosis, all sites show fat tails because of val-
ues greater than 3. Considering all statistical indicators, the SWH
displays remarkable differences among the sites considered.

3.2 Forecasting results and analysis

In this section, the forecasting results of all implemented mod-
els, namely, the proposed model (SWD-MsRwGWO-MLP), the
Bi-LSTM, the GWO-based MLP model, and the MsRwGWO-
based MLP model, are discussed in detail. Some experiments
are carried out in order to investigate the various characteris-
tics of wave data. Herein, the purpose of the first experiment is
to demonstrate the performance of the MsRwGWO data algo-
rithm over the GWO. Secondly, the SWH forecasting results
are to be presented with time series graphs, Taylor diagrams,
and performance metrics in detail. One-step-ahead forecasting
(30 min) is performed for all analyses.

To decompose the original data, the SWD approach is imple-
mented first. The SWD provides a way to acquire the full details
of the wave signal and improve the quality of the forecasting
model. As an example, the decomposed signal of Amets Berth
A buoy is shown in Figure 3. As can be seen, the original SWH
data is decomposed into five sub-components. SWD4 is the
main characteristic of the data, while SWD1, SWD2, SWD3,
and SWD5 are residual signals. Thanks to its ability to extract
the main signal, it provides an advantage in the forecasting stage.
In the SWD process, there is no loss of data for the original
signal. In other words, the original data can be recreated by
summing the SWD decomposed signal. A similar process is real-
ized for the entire wave dataset, and the decomposed signals
are obtained.

Before assessing the contribution of the decomposition to
forecasting performance, the impact of the used meta-heuristic
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354 DOKUR ET AL.

TABLE 1 The collected wave data statistical information.

Station Dataset Size Mean (cm) Standard deviation Min (cm) Max (cm) Kurtosis Skewness

Amets Berth A
Buoy

All Data 16847 285.36 155.24 35 1197 3.79 0.91

Training Sample 11794 253.17 148.64 35 1197 4.28 1.13

Test Sample 5053 360.51 143.94 93 1003 4.0 0.91

Clew Bay All Data 2494 126.29 57.98 40 329 2.97 0.75

Training Sample 1747 127.99 56.83 40 293 2.51 0.58

Test Sample 747 122.31 60.45 46 329 3.95 1.10

SmartBay
Wave Buoy

All Data 48511 73.75 51.17 1 546 5.90 1.45

Training Sample 33959 75.19 53.36 1 546 5.54 1.38

Test Sample 14552 70.39 45.48 7 442 6.79 1.57
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FIGURE 3 Decomposition of the SWH wave data from the Amets Berth A buoy based on the swarm decomposition approach.

optimizer (i.e. the MsRwGWO) is investigated by comparing
the forecasting results with those of the GWO. For the train-
ing stage, the models’ performances of GWO and MsRwGWO
are shown in Figure 4. While each model follows the trend of
the real signal, MsRwGWO-MLP outperforms the forecast at
the local minimum points. As such, it is observed that the MLP
parameters are better optimized with the MsRwGWO algo-
rithm. The search space for optimal parameters is improved
thanks to the transition mechanism in the MsRwGWO. As can
be seen in Figure 4, the error values are also gathered on the zero
axis. As in the author’s earlier study in [42], a single MsRwGWO

algorithm performs better than GWO for wind speed forecast-
ing. Following this experiment, the proposed model focuses
on adapting the decomposition process to the MsRwGWO
algorithm, which has proven superior to its GWO counterpart.

The forecasting performance of the proposed model is com-
pared with that of a deep learning model, namely, Bi-LSTM. The
number of hidden layers in the Bi-LSTM model was increased
by 2 for SWH data. The number of Bi-LSTM units required
for four layers is calculated as 100, 100, 75, and 75. A batch
size of 16 and a maximum number of training epochs of 100
are chosen. The implemented Bi-LSTM model uses the Adam
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FIGURE 4 Comparison of the model results (a) train performance (b) Multi-strategy random weighted grey wolf optimizer (MsRwGWO) model error for all
samples (c) error frequency of MsRwGWO model.

optimizer [49]. The learning rate is 0.005. Due to the random-
ness of the model parameters, all Bi-LSTM, GWO-MLP, and
MsRwGWO-MLP models were run 1000 times to minimize
errors. All analyses are investigated in Matlab R2020b on Win-
dows 10 with a 2.5-GHz Intel Core i5 7200U processor and a
64-bit operating system with 8 GB of RAM. Some performance
metrics, such as the root mean square error (RMSE), mean abso-
lute error (MAE), coefficient of variation (CV), and R2, are used
to compare the performance of all implemented models. Their
descriptions are given as follows:

RMSE =

√∑N

i=1(yi − ỹi )2

N
, (18)

MAE =
1
N

N∑
i=1

||yi − ỹi
||, (19)

CV =

1

N

√∑N

i=1
(yi − ỹi )

2

ȳi
, (20)

R2 = 1 −

∑N

i=1(yi − ỹi )
2∑N

i=1(yi − ȳi )2.
(21)

Figures 5 and 6 present the forecasting time series results
of the implemented models for the SWH data collected from
the Amets Bert A buoy and the SmartBay Wave buoy, respec-
tively. It is seen that all models roughly captured the trend of

TABLE 2 Performance metric results for the forecasting analysis.

Location Methods RMSE MAE CV (%) R2

Amets Berth A
buoy

BiLSTM 28.97 22.17 0.11 0.9595

GWO-MLP 35.34 24.15 0.14 0.9397

MsRwGWO-MLP 26.55 19.04 0.10 0.9660

Proposed 19.97 14.30 0.07 0.9807

Clew Bay BiLSTM 11.20 6.99 0.34 0.9656

GWO-MLP 12.79 7.90 0.38 0.9551

MsRwGWO-MLP 11.07 7.31 0.33 0.9664

Proposed 9.93 6.53 0.30 0.9730

SmartBay
Wave buoy

BiLSTM 9.31 5.50 0.11 0.9580

GWO-MLP 11.51 7.10 0.14 0.9360

MsRwGWO-MLP 7.90 5.10 0.09 0.9680

Proposed 5.97 3.61 0.07 0.9820

SWH at the time of forecasting. To clearly compare the per-
formance of the models, error metrics can be used. Table 2
reports the error metrics values for all the implemented models.
In terms of performance metrics, the proposed model out-
performs all others, with RMSE, MSE, CV, and R2 values of
19.97, 14.30, 0.07, and 0.9807, respectively. In terms of accuracy,
the implemented models can be sorted from highest to lowest
as SWD-MsRwGWO-MLP, MsRwGWO-MLP, BiLSTM, and
GWO-MLP, with R2 values of 0.9807, 0.9660, 0.9595, and
0.9397, respectively. Similar SWH forecasting results were also
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FIGURE 5 Forecasting test results of the implemented models for Amets Berth A Buoy significant wave height.

FIGURE 6 Forecasting test results of the implemented models for SmartBay Wave Buoy significant wave height.

obtained for other stations. Moreover, the R2 of SWH data is
too close to 1. As such, the SWH forecasting results obtained
can be said to be more reliable and accurate. Considering the
results for Clews station, it is observed that the model’s per-

formance slightly decreases due to the availability of limited
training data.

Furthermore, the data set from the National Oceanic and
Atmospheric Administration (NOAA) was used to demonstrate
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FIGURE 7 Scatter plots between original and forecasted values for the implemented models.

the superiority of the proposed methodology. The findings were
compared with those of the study in [47]. The NOAA 45002
buoy station SWH data from 2014 was used for this analysis. It
has been found that the MsRwGWO-MLP and the proposed
models achieved R2 values of 0.9394 and 0.9662, respectively,
which are significantly higher than the R2 value of 0.81 reported
in [47]. As a result, both models displayed more precise results.

To demonstrate the superiority of the proposed method-
ology over a deep-learning model (e.g., Bi-LSTM) and other
derived models, the scatter plots between observed and fore-
casted values are displayed in Figure 7 where the higher the
scattering values are, the better the model’s performance is.
It is observed that the proposed model, SWD-MsRwGWO-
MLP, has the best correlation. The findings confirm that the
SWD process improved the performance of the MsRwGWO
model. Moreover, to display the difference among the imple-
mented models, their Taylor diagrams are drawn as shown in
Figure 8. Thus, the link between the correlation coefficient, the
root mean square deviation (RMSD), and the standard devia-
tion is shown in Taylor diagrams. In this regard, all the models
can be compared on the basis of how well they predict the
target data. The triangular sign in red indicates the proposed
method. As can be seen, the RMSD and standard deviation of
the proposed method are lower. Furthermore, the coefficient
value is close to 1. Considering all the analyses, the proposed
model’s performance can be said to be reliable and effective for
SWH forecasting.

Although the proposed model has provided significant accu-
racy in SWH forecasting, there are still some limitations that
require additional research and model enhancement. One of the

most significant limitations is the amount of data (e.g., size)
collected. Furthermore, during data collection, measurement
errors may occur. During the training phase, missing or non-
sense data affects the optimization of model parameters and
weights. Another significant limitation is the additional compu-
tational time required for the decomposition and meta-heuristic
steps. Each sub-component of the decomposition phase
requires a certain amount of time to obtain. Similarly, the opti-
mization step increases the run time for each iteration. Despite
this, given the 30-min forecast horizon, these constraints have
no direct impact on the SWH forecasting problem.

4 CONCLUSIONS

This study proposed an integrated methodology for short-term
SWH forecasting. The methodology incorporates a signal pro-
cessing module into the forecasting model. Following the signal
decomposition using the SWD, an improved meta-heuristic
algorithm, namely MsRwGWO, is included to optimize the
parameters of the MLP-based forecasting model. Thanks to
the swarm decomposition process, the non-linearity and non-
stationarity of wave data have been reduced. Furthermore,
the MsRwGWO has optimized the parameters of the conven-
tional forecasting model efficiently. Original wave data from
three buoys in the North Atlantic Ocean was used to test
the proposed model. For validation of the proposed model,
a comparison against three deep learning (i.e. Bi-LSTM) and
meta-heuristic models (i.e. GWO-MLP, MsRwGWO-MLP) has
been performed.
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FIGURE 8 Taylor diagrams for (a) Amets Barth A buoy, (b) Clews Bay, and (c) SmartBay Wave buoy.

This proposed framework is unique in that it is a new
hybrid model based on a meta-heuristic optimizer and a sig-
nal decomposition module that has significantly improved the
accuracy of SWH forecasting. The proposed model has reduced
forecasting errors (e.g. MAE) ranging from 17.3%–49.1% and
10.6%–29.2% depending on the wave data characteristics con-
sidered and the models compared. The comparison analysis
has revealed consistency among the results for the other per-
formance metrics. The improved optimizer with SWD has
decreased forecasting errors (e.g. RMSE) by 11.3%–35.7%
when compared to the deep learning approach, BiLSTM. In
addition, the superiority of the proposed model over its coun-
terpart in the literature has been shown using the well-known
NOAA data set.

This model can be used to forecast other marine renewable
energy problems, such as tidal currents. Moreover, the pro-
posed approach can be investigated for problems with wind
speed forecasting, electrical load forecasting, econometric fore-
casting etc. Future research will look into the use of a multistage
decomposition process with the SWD.
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